L04 Computing NE in two player games

CS 280 Algorithmic Game Theory Ioannis Panageas

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$. Any Nash equilibrium with support $S, T(x, y)$ must satisfy:

1a) $x_i \geq 0$ for all $i \in [n]$. 2a) $x_i = 0$ for all $i \notin S$. 3a) $\sum_{i \in S} x_i = 1$.

1b) $y_i \geq 0$ for all $i \in [m]$. 2b) $y_i = 0$ for all $i \notin T$. 3b) $\sum_{i \in T} y_i = 1$.

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$. Any Nash equilibrium with support $S, T(x, y)$ must satisfy:

1a) $x_i \geq 0$ for all $i \in [n]$. 2a) $x_i = 0$ for all $i \notin S$. 3a) $\sum_{i \in S} x_i = 1$. 4a) $(Ry)_i \ge (Ry)_j \ \forall i \in S, j \in [n].$

1b) $y_i \geq 0$ for all $i \in [m]$. 2b) $y_i = 0$ for all $i \notin T$. 3b) $\sum_{i \in T} y_i = 1$. 4b) $(C^{\top} x)_i \ge (C^{\top} x)_i \ \forall i \in T, j \in [m].$

A trivial algorithm

 \bullet

 $LP(S, T)$

$$
(C^{\top}x)_i \ge (C^{\top}x)_j \ \forall i \in T, j \in [m]
$$

\n
$$
(Ry)_i \ge (Ry)_j \ \forall i \in S, j \in [n].
$$

\n
$$
\sum_{i \in S} x_i = 1.
$$

\n
$$
\sum_{i \in T} y_i = 1.
$$

\n
$$
x_i = 0 \text{ for all } i \notin S.
$$

\n
$$
y_i = 0 \text{ for all } i \notin T.
$$

\n
$$
x_i \ge 0 \text{ for all } i \in [n].
$$

\n
$$
y_i \ge 0 \text{ for all } i \in [m].
$$

Algorithm: For all index sets S , T , check feasibility of $LP(S, T)$. If a feasible solution (x, y) is found, it is a Nash.

A trivial algorithm

 $LP(S, T)$

$$
(C^{\top}x)_i \ge (C^{\top}x)_j \,\forall i \in T, j \in [m].
$$

\n
$$
(Ry)_i \ge (Ry)_j \,\forall i \in S, j \in [n].
$$

\n
$$
\sum_{i \in S} x_i = 1.
$$

\n
$$
\text{suming time } 2^{n+m} \cdot \text{poly}(n, n))
$$

Slow, not polynomial!

101 un e de de 71

Algorithm: For all index sets S , T , check feasibility of $LP(S, T)$. If a feasible solution (x, y) is found, it is a Nash.

Assumption: Matrices R , C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

Assumption: Matrices R , C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$
P_1 = \{x \in \mathbb{R}^n : \forall i \in [n] \ x_i \ge 0 \ \& \ \forall j \in [m] \ (x^{\top}C)_j \le 1\}.
$$

\n
$$
P_2 = \{y \in \mathbb{R}^m : \forall i \in [m] \ y_i \ge 0 \ \& \ \forall j \in [n] \ (Ry)_j \le 1\}.
$$

\n
$$
\text{nrml}(x) = \left(\sum_{i \in [n]} x_i\right)^{-1} x \qquad \text{nrml}(y) = \left(\sum_{i \in [m]} y_i\right)^{-1} y
$$

Assumption: Matrices R , C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$
P_1 = \{x \in \mathbb{R}^n : \forall i \in [n] \ x_i \ge 0 \ \& \ \forall j \in [m] \ (x^{\top}C)_j \le 1\}.
$$

$$
P_2 = \{y \in \mathbb{R}^m : \forall i \in [m] \ y_i \ge 0 \ \& \ \forall j \in [n] \ (Ry)_j \le 1\}.
$$

$$
nrml(x) = \left(\sum_{i \in [n]} x_i\right)^{-1} x \ nrmml(y) = \left(\sum_{i \in [m]} y_i\right)^{-1} y
$$
Def. x has label *i* if $x_i = 0$ or $(x^{\top}C)_i = 1$. Same for *j*.

Assumption: Matrices R , C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$
P_1 = \{x \in \mathbb{R}^n : \forall i \in [n] \ x_i \ge 0 \ \& \ \forall j \in [m] \ (x^\top C)_j \le 1\}.
$$

\n
$$
P_2 = \{y \in \mathbb{R}^m : \forall i \in [m] \ y_i \ge 0 \ \& \ \forall j \in [n] \ (Ry)_j \le 1\}.
$$

\n
$$
nrml(x) = \left(\sum_{i \in [n]} x_i\right)^{-1} x \ nrmml(y) = \left(\sum_{i \in [m]} y_i\right)^{-1} y
$$

\n**Def.** x has label i if $x_i = 0$ or $(x^\top C)_i = 1$. Same for j.
\n**Lemma.** Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*))$, $nrml(y^*)$ is a Nash equilibrium.

 $\mathfrak a$

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (*i* is best response of row player to $\text{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^{*T}C)_j = 1$ (j is best response of column player to $\text{nrml}(x^*)$).

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (*i* is best response of row player to $\text{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^{*T}C)_j = 1$ (j is best response of column player to $\text{nrml}(x^*)$).

We conclude that

if
$$
x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]
$$

if $y_i^* > 0 \Rightarrow (x^{*\top}C)_i \ge (x^{*\top}C)_j \quad \forall j \in [m]$

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (*i* is best response of row player to $\text{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^{*T}C)_j = 1$ (j is best response of column player to $\text{nrml}(x^*)$).

We conclude that

if
$$
x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]
$$

if $y_i^* > 0 \Rightarrow (x^{* \top}C)_i \ge (x^{* \top}C)_j \quad \forall j \in [m]$

Hence same is true for $\text{nrml}(x^*)$, $\text{nrml}(y^*)$.

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

We conclude that

if
$$
x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]
$$

if $y_i^* > 0 \Rightarrow (x^{* \top}C)_i \ge (x^{* \top}C)_j \quad \forall j \in [m]$

Hence same is true for $\text{nrml}(x^*)$, $\text{nrml}(y^*)$.

Lemke-Howson Algorithm
Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent

equalities (the rest constraints of P_1 are strict inequalties). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalties). For $P_1 \cup P_2$ is $n + m$. This is the non-degenerate case.

Lemke-Howson Algorithm
Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent

equalities (the rest constraints of P_1 are strict inequalties). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalties). For $P_1 \cup P_2$ is $n + m$. This is the non-degenerate case.

Algorithm (Lemke-Howson). We define the following algorithm:

- 1. Initialize $x = 0$ and $y = 0$.
- 2. $k = k_0 = 1$.
- $3.$ Loop
- In P_1 find the neighbor vertex x' of x with label k' instead of k. Remove 4. label k and add label k' .
- Set $x = x'$. $5₁$
- If $k' = 1$ STOP. 6.
- 7. In P_2 find the neighbor vertex y' of y with label k'' instead of k'. Remove label k' and add label k'' .
- Set $y=y'$. 8.
- If $k'' = 1$ STOP. 9.
- Set $k = k''$. 10.

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

• One **duplicate** label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One **duplicate** label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .
- They have all labels exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it.

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One **duplicate** label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .
- They have all labels exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it.

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

- 1. Lemke-Howson algorithm begins at the configuration (0, 0).
- 2. (0, 0) has all labels and is therefore an endpoint of a path component.
- 3. The algorithm will terminate at the other endpoint of the path.
- 4. The other point is not $(0, 0)$ and cannot be $(x, 0)$ or $(0, y)$.

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

- 1. Lemke-Howson algorithm begins at the configuration (0, 0).
- 2. (0, 0) has all labels and is therefore an endpoint of a path component.
- 3. The algorithm will terminate at the other endpoint of the path.
- 4. The other point is not $(0, 0)$ and cannot be $(x, 0)$ or $(0, y)$.

From previous lemma, it must be a Nash equilibrium!

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$
\sum_{v} d_v = 2E.
$$

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$
\sum_v d_v = 2E.
$$

Hence we have an even number of odd vertices. But $(0,0)$ is an odd vertex and not a Nash equilibrium!

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$
\sum_v d_v = 2E.
$$

Hence we have an even number of odd vertices. But $(0,0)$ is an odd vertex and not a Nash equilibrium!

Theorem (Savani, von Stengel'04). The Lemke-Howson algorithm runs in exponential time in worst-case

Approximating a Nash eq.

Definition (k -uniform). A strategy x is called k -uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k -uniform strategy has support size at most k .

Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called *k*-uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k -uniform strategy has support size at most k .

Theorem (Approximate Nash with small support). Let $\epsilon > 0$. For any two player game, there always exists a k-uniform ϵ -approximate Nash equilibrium for $k = \frac{12 \log n}{\epsilon^2}$.

Approximating a Nash eq.

Definition (k -uniform). A strategy x is called k -uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k -uniform strategy has support size at most k .

Theorem (Approximate Nash with small support). Let $\epsilon > 0$. For any two player game, there always exists a k -uniform ϵ -approximate Nash equilibrium for $k = \frac{12 \log n}{c^2}$.

Remarks:

This was shown by Lipton, Markakis and Mehta using probabilistic method. It gives a $n^{O(\frac{\log n}{\epsilon^2})}$ algorithm. It was shown by Rubinstein that this is tight!